
PyRolL
Release 1.0.0

Max Weiner

Dec 20, 2022

CONTENTS

1 Commands 3
1.1 create-config . 3
1.2 create-input-py . 3
1.3 new . 3
1.4 input-py . 3
1.5 solve . 4
1.6 report . 4

2 Examples 5

3 Config File Format 7

4 Python Input Format 9

5 The concept of grooves in PyRolL 11
5.1 The Generalized Groove . 11
5.2 Box-like Grooves . 12
5.3 Diamond-like grooves . 13
5.4 Round-like Grooves . 14
5.5 Oval-like Grooves . 15
5.6 Reference of Groove Classes . 17

6 The Concept of Profiles 23
6.1 Hooks . 25
6.2 Derived classes . 26

7 Pass Sequence Units in PyRolL 27
7.1 Roll Passes . 27
7.2 Transports . 30

8 HTML Report Generation 31
8.1 Class Documentation . 31
8.2 Hooks . 31

9 Data Export 33
9.1 Specifying data to include . 33
9.2 Adding new file formats . 33
9.3 Class Documentation . 34
9.4 Hooks . 34

10 The Plugin System 35

i

11 Installation 37

12 Basic Usage 39

Python Module Index 41

Index 43

ii

PyRolL, Release 1.0.0

PyRolL is an OpenSource rolling framework, aimed to provide a fast and extensible base for rolling simulation. The
current focus lies on groove rolling in elongation grooves. The core packages comes with a basic set of models to allow
a first estimation of forces and torques occurring in a pass sequence. There is a flexible plugin system, able to modify
and extend the model set available to describe the process.

If the pyroll package is installed via pip, a command line tool name pyroll is installed alongside in the system.

If the tool is not available, please check the content of your PATH environment variable.

The tool has the following syntax:

pyroll [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

As one can see, subcommands can be chained in one command line. For this reason subcommands take never argu-
ments, but only options. Commands that rely on the data generated by another command must be chained, since no
data persists between different runs of the tool.

At OPTIONS several gloabl options can be set, namely:

Option Description
-c, --configfile
PATH

Give a path to a config YAML file. Per default the file ./config.yaml is used if it exists.
See here for details.

-p, --plugin
NAME

Give a plugin to load additionally to the ones specified in the config. Can be used multiple
times.

The tool provides a set of subcommands explained in the following section.

CONTENTS 1

PyRolL, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

COMMANDS

1.1 create-config

Creates a standard config file with basic logging configuration and empty plugins list. The file is created in the path
specified by the -f/--file option, which defaults to ./config.yaml.

1.2 create-input-py

Creates a sample input script for use with the input-py command. The file is created in the path specified by the
-f/--file option, which defaults to ./input.py. This file can be used as is and modified as desired. It represents
the conditions of the 3-high experimental rolling stand at the Institute of Metals Forming.

1.3 new

Creates a new PyRolL simulation project in the directory specified by -d/--dir. The directory will be created if not
already existing. Creates a config.yaml and an input.py in the specified directory. This command is basically a
shortcut for

pyroll -c <dir>/config.yaml create-config -p -f <dir>/config.yaml create-input-py -k min␣
→˓-f <dir>/input.py

in a fresh or existing directory.

1.4 input-py

Reads input data from the file specified by the -f/--file option, which defaults to ./input.py. Use the
create-input-py command to create a sample which can be modified. See here for more information on the format
of this file.

3

https://tu-freiberg.de/en/fakult5/imf

PyRolL, Release 1.0.0

1.5 solve

Runs the solution procedure for the pass sequence loaded by one of the input commands.

1.6 report

Generates a HTML report page from the simulation results. The contents of the page can be extended by plugins, please
see here for additional information. The file to write to can be specified with the -f/--file option, which defaults to
report.html.

4 Chapter 1. Commands

CHAPTER

TWO

EXAMPLES

To read from a python script, solve and generate a report just use:

pyroll input-py solve report

To specify the files explicitly use:

pyroll input-py -f input.py solve report -f report.html

To use a different config file:

pyroll -c config2.yaml input-py solve report

To load additional plugins:

pyroll -p pyroll_plugin1 -p pyroll_plugin2 input-py solve report

5

PyRolL, Release 1.0.0

6 Chapter 2. Examples

CHAPTER

THREE

CONFIG FILE FORMAT

The configuration has to be specified in YAML format. The content of the default config file is as follows:

plugins: [] # list full qualified names of plugins to load (as they were importable in␣
→˓real python code)

logging: # configuration for the logging standard library package
version: 1
formatters:
console:
format: '[%(levelname)s] %(name)s: %(message)s'

file:
format: '%(asctime)s [%(levelname)s] %(name)s: %(message)s'

handlers:
console:
class: logging.StreamHandler
level: INFO
formatter: console
stream: ext://sys.stdout

file:
class: logging.FileHandler
level: INFO
formatter: file
filename: pyroll.log

root:
level: INFO
handlers: [console, file]

loggers:
matplotlib:
level: ERROR

In the plugins node several plugins can be specified to load additionally to the core functionalities. List the full qualified
package name you want to load, as you would import in Python. For example to load the Wusatowski Spreading and
the Integral Thermal plugins:

plugins:
- pyroll_wusatowski_spreading
- pyroll_integral_thermal

7

https://github.com/pyroll-project/pyroll-wusatowski-spreading
https://github.com/pyroll-project/pyroll-wusatowski-spreading

PyRolL, Release 1.0.0

The logging node configures logging using the Python standard logging package, see here for further information on
that. The default config specifies logging on the console and to the pyroll.log file on information level. If you want
more detailed logging, replace the INFO specifiers with DEBUG. To avoid log pollution by the matplotlib package,
their level is set to ERROR.

8 Chapter 3. Config File Format

https://docs.python.org/3/howto/logging.html

CHAPTER

FOUR

PYTHON INPUT FORMAT

The most flexible way of defining input for PyRolL is the direct use of a python script. A script loadable by the
input-py command must define at least two variables:

Variable Description
in_profile A Profile object defining the properties of the incoming workpiece.
sequence A list of Unit objects (either RollPass or Transport) defining the pass sequence.

A minimal input script is shown below:

from pyroll.core.grooves import SquareGroove, DiamondGroove
from pyroll.core import Profile
from pyroll.core import RollPass
from numpy import pi

initial profile
in_profile = Profile(

width=68e-3,
height=68e-3,
groove=SquareGroove(r1=0, r2=3e-3, tip_angle=pi / 2, tip_depth=34e-3),
temperature=1200 + 273.15,
strain=0,
material="C45",
flow_stress=50e6

)

pass sequence
sequence = [

RollPass(
label="Diamond I",
groove=DiamondGroove(

usable_width=76.55e-3,
tip_depth=22.1e-3,
r1=12e-3,
r2=8e-3

),
roll_radius=160e-3,
velocity=1.4,
gap=3e-3,

),
RollPass(

(continues on next page)

9

PyRolL, Release 1.0.0

(continued from previous page)

label="Square II",
groove=SquareGroove(

usable_width=52.7e-3,
tip_depth=25.95e-3,
r1=8e-3,
r2=6e-3

),
roll_radius=160e-3,
velocity=1.4,
gap=3e-3,

),
]

The attributes to give as keyword arguments to the constructors depend on the plugins loaded. Most plugins need
additional data about the pass sequence or the incoming profile. For information on the basic data needed see the docs
of Profile, RollPass and Transport.

10 Chapter 4. Python Input Format

CHAPTER

FIVE

THE CONCEPT OF GROOVES IN PYROLL

5.1 The Generalized Groove

All elongation grooves can be traced back to a generalized elongation groove consisting of two straights and four radii.
The geometry of this is shown below.

All geometric key values like cross-sections and perimeters can be calculated on this generalized groove. The general-
ized groove is implemented in the GrooveBase class, all special groove types are derived from that.

In the following the measures of the groove are listed, their names are used in source code and throughout the docu-
mentation. The radii and angles are numbered from outside to inside.

Symbol Description
𝑟 Radius
𝛼 Angle corresponding to a radius
𝛽, 𝛾 Angles useful for coordinate calculation
𝑏𝑑 Ground width
𝑏′𝑑 Even ground width
𝑏ks Tip width
𝑏kn Usable width
𝑑 Depth
𝑖 Indent
𝑠 Roll gap

The coordinates of the points 1 to 12 shown in the figure can be calculated as follows, where the angles 𝛽 = 𝛼4−𝛼3/2
and 𝛾 = 𝜋

2 − 𝛼2 − 𝛼3 + 𝛼4.

11

PyRolL, Release 1.0.0

number z y
1 𝑧2 + 𝑟1 tan

𝛼2

2 0

2 𝑏𝑘𝑛

2 0
3 𝑧1 − 𝑟1 sin𝛼1 𝑟1 (1− cos𝛼1)
4 𝑧11 + 𝑟2 cos 𝛾 𝑦11 + 𝑟2 sin 𝛾
5 𝑧10 + 𝑟3 sin

(︀
𝛼3

2 − 𝛽
)︀

𝑦10 + 𝑟3 cos
𝛼3

2

6 𝑧8 + 𝑟4 sin𝛼4 𝑦8 − 𝑟4 sin𝛼4

7 𝑏′𝑑
2 𝑑− 𝑖

8 𝑏′𝑑
2 𝑦7 + 𝑟4

9 0 𝑦7
10 𝑧6 + 𝑟3 sin

(︀
𝛼3

2 + 𝛽
)︀

𝑦6 + 𝑟3 cos
(︀
𝛼3

2 + 𝛽
)︀

11 𝑧10 + (𝑟3 − 𝑟2) sin
(︀
𝛼3

2 − 𝛽
)︀

𝑦10 + (𝑟3 − 𝑟2) cos
(︀
𝛼3

2 − 𝛽
)︀

12 𝑧1 𝑟1

However, in the current implementation the term “groove” is more narrow. From now on, the term should represent
only the shape machined into the roll surface. Therefore, the roll gap 𝑠 is no measure of the groove itself but of the
RollPass. Also, the tip width 𝑏kn is not inherent to the groove, since it depends on the roll gap.

5.2 Box-like Grooves

5.2.1 The BoxGroove class

The BoxGroove class represents a rectangular shaped groove as shown in the figure. For wear reasons, the flanks a
typically inclined by a small angle.

Mandatory measures of the box groove are the two radii 𝑟1 and 𝑟2, as well as the depth 𝑑. To constrain geometry fully,
any two of the following must be given:

• usable width 𝑏kn

• ground width 𝑏𝑑

• flank angle 𝛼1

So the constructor has the following signature:

BoxGroove(r1, r2, depth, usable_width, ground_width, flank_angle)

The radii are typically small, the depth is 𝑑 typically ≤ 𝑏kn
2 .

𝑟3 and 𝑟4 are considered to be zero.

𝑏𝑑 was chosen in favor of the even ground width 𝑏′𝑑, because it does not change when the radii are modified. So the
overall geometry remains the same if one modifies only the radii.

12 Chapter 5. The concept of grooves in PyRolL

PyRolL, Release 1.0.0

5.2.2 The ConstrictedBoxGroove class

The ConstrictedBoxGroove class represents a BoxGroove but with an indent in the ground as shown in the figure.

Mandatory measures of the box groove are the two radii 𝑟1 and 𝑟2, as well as the depth 𝑑 and the indent 𝑖. To constrain
geometry fully, any two of the following must be given:

• usable width 𝑏kn

• ground width 𝑏𝑑

• flank angle 𝛼1

So the constructor has the following signature:

ConstrictedBoxGroove(r1, r2, depth, indent, usable_width, ground_width, flank_angle)

The radii are typically small, the depth is 𝑑 typically ≤ 𝑏kn
2 .

𝑟3 and 𝑟4 are considered to be zero.

5.3 Diamond-like grooves

5.3.1 The DiamondGroove class

The DiamondGroove class represents a rhombus shaped groove as shown in the figure.

Mandatory measures of this groove are the two radii 𝑟1 and 𝑟2. To constrain geometry fully, any two of the following
must be given:

• usable width 𝑏kn

• tip depth 𝑑t

• tip angle 𝛿

So the constructor has the following signature:

DiamondGroove(r1, r2, usable_width, tip_depth, tip_angle)

The radii are typically small, the depth is 𝑑t typically < 𝑏kn
2 so that the tip angle 𝛿 is larger than 90°.

𝑟3 and 𝑟4 are considered to be zero, as well as 𝑏𝑑 and 𝑏′𝑑.

The tip depth 𝑑t was chosen in favor of the real depth 𝑑, because it does not change, when the radii are modified. So
the overall geometry remains the same if one modifies only the radii. The tip depth can be considered as the diagonal
of the rhombus with sharp corners.

5.3. Diamond-like grooves 13

PyRolL, Release 1.0.0

5.3.2 The SquareGroove class

The SquareGroove class represents a square shaped groove as shown in the figure.

Mandatory measures of this groove are the two radii 𝑟1 and 𝑟2. To constrain geometry fully, any two of the following
must be given:

• usable width 𝑏kn

• tip depth 𝑑t

• tip angle 𝛿

So the constructor has the following signature:

SquareGroove(r1, r2, usable_width, tip_depth, tip_angle)

The radii are typically small, the depth is 𝑑t typically ≈ 𝑏kn
2 . The tip angle 𝛿 is typically a one or two degree larger

than 90° for wear reasons.

𝑟3 and 𝑟4 are considered to be zero, as well as 𝑏𝑑 and 𝑏′𝑑.

The tip depth 𝑑t was chosen in favor of the real depth 𝑑, because it does not change, when the radii are modified. So
the overall geometry remains the same if one modifies only the radii. The tip depth can be considered as the diagonal
of the square with sharp corners.

The constructor will raise a warning, if the tip angle significantly deviates from 90°, consider to use a DiamondGroove
instead.

5.4 Round-like Grooves

5.4.1 The RoundGroove class

The RoundGroove class represents a groove with a circular cross-section as shown in the figure.

It is defined by two radii 𝑟1 and 𝑟2 and the depth 𝑑, so the constructor has the following signature:

RoundGroove(r1, r2, depth)

The geometric constraints are 𝑟1 << 𝑟2 and 𝑑 < 𝑟2.

𝑟3 and 𝑟4 are considered to be zero, as well as 𝑏𝑑 and 𝑏′𝑑.

The angles can be calculated as following:

𝛼1 = 𝛼2 = arccos

(︂
1− 𝑑

𝑟1 + 𝑟2

)︂
The usable width is then:

𝑏kn = 2
(︁
𝑟1 sin𝛼1 + 𝑟2 sin𝛼2 − 𝑟1 tan

𝛼1

2

)︁

14 Chapter 5. The concept of grooves in PyRolL

PyRolL, Release 1.0.0

5.4.2 The FalseRoundGroove class

The FalseRoundGroove class represents a groove with a roughly circular cross-section, which shows a small straight
flank, as shown in the figure.

It is defined by two radii 𝑟1 and 𝑟2, the depth 𝑑 and the flank angle 𝛼1 , so the constructor has the following signature:

FalseRoundGroove(r1, r2, depth, flank_angle)

The geometric constraints are 𝑟1 << 𝑟2, 𝑑 < 𝑟2 and 𝛼1 < 90 .

𝑟3 and 𝑟4 are considered to be zero, as well as 𝑏𝑑 and 𝑏′𝑑.

The usable width can be calculated as:

𝑏kn = 2
𝑑+ 𝑟2

cos𝛼1
− 𝑟2

tan𝛼1

5.5 Oval-like Grooves

5.5.1 The CircularOvalGroove class

The CircularOvalGroove class represents an oval shaped groove consisting of two radii as shown in the figure.

It is defined by two radii 𝑟1 and 𝑟2 and the depth 𝑑, so the constructor has the following signature:

CircularOvalGroove(r1, r2, depth)

The geometric constraints are 𝑟1 << 𝑟2 and 𝑑 << 𝑟2.

𝑟3 and 𝑟4 are considered to be zero, as well as 𝑏𝑑 and 𝑏′𝑑.

The topology of this groove is similar to the RoundGroove, with the main difference, that the center of 𝑟2 is not placed
in the center of the groove. For this reason 𝑑 is typically much smaller than ‘𝑟2‘.

5.5.2 The FlatOvalGroove class

The FlatOvalGroove class represents an oval shaped groove consisting of two radii and an even ground as shown in
the figure.

Mandatory measures of this groove are the two radii 𝑟1 and 𝑟2, as well as the depth 𝑑 and the usable width 𝑏kn.

So the constructor has the following signature:

FlatOvalGroove(r1, r2, depth, usable_width)

The depth is 𝑑 typically ≤ 𝑏kn
2 .

𝑟3 and 𝑟4 are considered to be zero.

5.5. Oval-like Grooves 15

PyRolL, Release 1.0.0

5.5.3 The SwedishOvalGroove class

The SwedishOvalGroove class represents a hexagonal shaped groove as shown in the figure. The term “hexagonal” is
also used for this type of groove, but can be confused with regular hexagon shaped grooves. The current type of groove
is used as an oval and therefore the term swedish oval should be used, which is derived from its origin in swedish steel
plants.

Mandatory measures of this groove are the two radii 𝑟1 and 𝑟2, as well as the depth 𝑑. To constrain geometry fully, any
two of the following must be given:

• usable width 𝑏kn

• ground width 𝑏𝑑

• flank angle 𝛼1

So the constructor has the following signature:

SwedishOvalGroove(r1, r2, depth, usable_width, ground_width, flank_angle)

The radii are typically small, the depth is 𝑑 typically << 𝑏kn
2 .

𝑟3 and 𝑟4 are considered to be zero.

𝑏𝑑 was chosen in favor of the even ground width 𝑏′𝑑, because it does not change when the radii are modified. So the
overall geometry remains the same if one modifies only the radii.

The topology of this groove is similar to the BoxGroove, but typically the flank angles are smaller and the groove is
less deep.

5.5.4 The ConstrictedSwedishOvalGroove class

The ConstrictedSwedishOvalGroove class represents a SwedishOvalGroove but with an indent in the ground as
shown in the figure.

Mandatory measures of this groove are the two radii 𝑟1 and 𝑟2, as well as the depth 𝑑 and the indent ‘𝑖‘. To constrain
geometry fully, any two of the following must be given:

• usable width 𝑏kn

• ground width 𝑏𝑑

• flank angle 𝛼1

So the constructor has the following signature:

ConstrictedSwedishOvalGroove(r1, r2, depth, indent, usable_width, ground_width, flank_
→˓angle)

The radii are typically small, the depth is 𝑑 typically << 𝑏kn
2 .

𝑟3 and 𝑟4 are considered to be zero.

16 Chapter 5. The concept of grooves in PyRolL

PyRolL, Release 1.0.0

5.5.5 The Oval3RadiiGroove class

The Oval3RadiiGroove class represents an oval shaped groove consisting of three radii as shown in the figure.

Mandatory measures of this groove are the three radii 𝑟1, 𝑟2 and 𝑟3, as well as the depth 𝑑 and the usable width 𝑏kn.

So the constructor has the following signature:

Oval3RadiiGroove(r1, r2, r3, depth, usable_width)

The depth is 𝑑 typically ≤ 𝑏kn
2 .

𝑟4 and 𝑏′𝑑 are considered to be zero.

5.5.6 The Oval3RadiiFlankedGroove class

The Oval3RadiiFlankedGroove class represents an oval shaped groove consisting of three radii and a small straight
flank as shown in the figure.

Mandatory measures of this groove are the three radii 𝑟1, 𝑟2 and 𝑟3, as well as the depth 𝑑, the usable width 𝑏kn and
the flank angle 𝛼1.

So the constructor has the following signature:

Oval3RadiiFlankedGroove(r1, r2, r3, depth, usable_width, flank_angle)

The depth is 𝑑 typically ≤ 𝑏kn
2 .

𝑟4 and 𝑏′𝑑 are considered to be zero.

5.6 Reference of Groove Classes

class BoxGroove(r1: float, r2: float, depth: float, ground_width: Optional[float] = None, usable_width:
Optional[float] = None, flank_angle: Optional[float] = None)

Represents a box shaped groove.

Exactly two of ground_width, usable_width and flank_angle must be given.

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

• depth (float) – depth of the groove

• ground_width (float) – width of the groove from intersection between two flanks and
ground width

• usable_width (float) – ground width excluding influence of radii

• flank_angle (float) – angle of the flanks

Raises
ValueError – if not exactly two of ground_width, usable_width and flank_angle are given

5.6. Reference of Groove Classes 17

PyRolL, Release 1.0.0

property types: 'box'

A tuple of keywords to specify the types of this groove.

class CircularOvalGroove(r1: float, r2: float, depth: float)
Represents an oval shaped groove with one main radius.

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

• depth (float) – depth of the groove

property types: 'oval', 'circular_oval'

A tuple of keywords to specify the types of this groove.

class ConstrictedBoxGroove(r1: float, r2: float, r4: float, depth: float, indent: float, ground_width:
Optional[float] = None, usable_width: Optional[float] = None, flank_angle:
Optional[float] = None)

Represents a box shaped groove with an indented ground.

Exactly two of ground_width, usable_width and flank_angle must be given.

Parameters
r1 – radius of the first edge :type r1: float :param r2: radius of the second edge :type r2: float
:param depth: depth of the groove :type depth: float :param indent: indentation of the depth
of the groove towards the grooves center :type indent: float :param ground_width: width of
the groove from intersection between two flanks and ground width :type ground_width: float
:param usable_width: ground width excluding influence of radii :type usable_width: float :param
flank_angle: angle of the flanks :type flank_angle: float :raises ValueError: if not exactly two of
ground_width, usable_width and flank_angle are given

property types: 'box', 'constricted_box'

A tuple of keywords to specify the types of this groove.

class ConstrictedSwedishOvalGroove(r1: float, r2: float, r4: float, depth: float, indent: float, ground_width:
Optional[float] = None, usable_width: Optional[float] = None,
flank_angle: Optional[float] = None)

Represents a hexagonal shaped groove with an indented ground that is used like an oval groove (swedish oval).

Exactly two of ground_width, usable_width and flank_angle must be given.

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

• depth (float) – depth of the groove

• indent (float) – indentation of the depth of the groove towards the grooves center

• ground_width (float) – width of the groove from intersection between two flanks and
ground width

• usable_width (float) – ground width excluding influence of radii

• flank_angle (float) – angle of the flanks

Raises
ValueError – if not exactly two of ground_width, usable_width and flank_angle are given

18 Chapter 5. The concept of grooves in PyRolL

PyRolL, Release 1.0.0

property types: 'oval', 'swedish_oval', 'constricted_swedish_oval'

A tuple of keywords to specify the types of this groove.

class DiamondGroove(r1: float, r2: float, usable_width: Optional[float] = None, tip_depth: Optional[float] =
None, tip_angle: Optional[float] = None)

Represent a diamond shaped groove.

Exactly two of usable_width, tip_depth and tip_angle must be given.

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

• usable_width (float) – ground width excluding influence of radii

• tip_depth (float) – depth of the tip of the groove

• tip_angle (float) – angle at witch the tip is formed

Raises
ValueError – if not exactly two of usable_width, tip_depth and tip_angle are given

property types: 'diamond'

A tuple of keywords to specify the types of this groove.

class FalseRoundGroove(r1: float, r2: float, depth: float, flank_angle: float)
Represents a round shaped groove with a dedicated flank (false round).

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

• depth (float) – depth of the groove

• flank_angle (float) – angle of the flanks

property types: 'round', 'false_round'

A tuple of keywords to specify the types of this groove.

class FlatGroove(width: float)
Represents a box shaped groove.

Parameters
width (float) – width of the forming zone

property types: 'flat'

A tuple of keywords to specify the types of this groove.

class FlatOvalGroove(r1: float, r2: float, depth: float, usable_width: float)
Represent an oval shaped groove with a flat ground.

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

• depth (float) – depth of the groove

• usable_width (float) – ground width excluding influence of radii

5.6. Reference of Groove Classes 19

PyRolL, Release 1.0.0

property types: 'oval', 'flat_oval'

A tuple of keywords to specify the types of this groove.

class GenericElongationGroove(usable_width: float = 0, depth: float = 0, r1: float = 0, r2: float = 0, r3: float
= 0, r4: float = 0, even_ground_width: float = 0, indent: float = 0, alpha1:
float = 0, alpha2: float = 0, alpha3: float = 0, alpha4: float = 0, types:
Tuple[str, ...] = ())

Represents a groove defined by the generic elongation groove geometry.

property contour_line: LineString

A line representing the geometry of the groove contour.

property cross_section: Polygon

A polygon representing the cross-section of this groove limited by the contour line and y=0.

property depth: float

The maximum depth of the groove.

local_depth(z)→ Union[float, ndarray]
Function of the local groove depth in dependence on the z-coordinate.

property types: Tuple[str, ...]

A tuple of keywords to specify the types of this groove.

property usable_width: float

The usable width of the groove, meaning the width of ideal filling.

class GrooveBase

Abstract base class for all grooves.

abstract property contour_line: LineString

A line representing the geometry of the groove contour.

abstract property cross_section: Polygon

A polygon representing the cross-section of this groove limited by the contour line and y=0.

abstract property depth: float

The maximum depth of the groove.

abstract local_depth(z: Union[float, ndarray])→ Union[float, ndarray]
Function of the local groove depth in dependence on the z-coordinate.

abstract property types: Tuple[str, ...]

A tuple of keywords to specify the types of this groove.

abstract property usable_width: float

The usable width of the groove, meaning the width of ideal filling.

class Oval3RadiiFlankedGroove(r1: float, r2: float, r3: float, depth: float, usable_width: float, flank_angle:
float)

Represents an oval shaped groove with 3 main radii and a dedicated flank.

Exactly two of ground_width, usable_width and flank_angle must be given.

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

20 Chapter 5. The concept of grooves in PyRolL

PyRolL, Release 1.0.0

• depth (float) – depth of the groove

• usable_width (float) – ground width excluding influence of radii

• flank_angle (float) – angle of the flanks

Raises
ValueError – if not exactly two of ground_width, usable_width and flank_angle are given

property types: 'oval', 'oval_3_radii', 'oval_3_radii_flanked'

A tuple of keywords to specify the types of this groove.

class Oval3RadiiGroove(r1: float, r2: float, r3: float, depth: float, usable_width: float)
Represents an oval shaped groove with 3 main radii.

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

• r2 – radius of the third edge

• depth (float) – depth of the groove

• usable_width (float) – ground width excluding influence of radii

property types: 'oval', 'oval_3_radii'

A tuple of keywords to specify the types of this groove.

class RoundGroove(r1: float, r2: float, depth: float)
Represents a round shaped groove.

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

• depth (float) – depth of the groove

property types: 'round'

A tuple of keywords to specify the types of this groove.

class SplineGroove(contour_points: Union[Iterable[Tuple[float, float]], ndarray], types: Iterable[str],
usable_width: Optional[float] = None)

Represents a groove defined by a linear spline contour.

Parameters

• contour_points – an iterable of contour points to be used for the spline

• types – an interable of string keys used as type classifiers

• usable_width – the usable width to assume for this instance, if None, the maximum width
will be used

property contour_line: LineString

A line representing the geometry of the groove contour.

property cross_section: Polygon

A polygon representing the cross-section of this groove limited by the contour line and y=0.

5.6. Reference of Groove Classes 21

PyRolL, Release 1.0.0

property depth: float

The maximum depth of the groove.

local_depth(z)→ Union[float, ndarray]
Function of the local groove depth in dependence on the z-coordinate.

property types: Tuple[str, ...]

A tuple of keywords to specify the types of this groove.

property usable_width: float

The usable width of the groove, meaning the width of ideal filling.

class SquareGroove(r1: float, r2: float, usable_width: Optional[float] = None, tip_depth: Optional[float] =
None, tip_angle: Optional[float] = None)

Represents a square shaped groove (diamond with tip angle near 90°).

Exactly two of usable_width, tip_depth and tip_angle must be given.

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

• usable_width (float) – ground width excluding influence of radii

• tip_depth (float) – depth of the tip of the groove

• tip_angle (float) – angle at witch the tip is formed

Raises

• ValueError – if not exactly two of usable_width, tip_depth and tip_angle are given

• ValueError – if tip angle is <85° or >95° (no matter if given or calculated internally)

property types: 'diamond', 'square'

A tuple of keywords to specify the types of this groove.

class SwedishOvalGroove(r1: float, r2: float, depth: float, ground_width: Optional[float] = None,
usable_width: Optional[float] = None, flank_angle: Optional[float] = None)

Represents a hexagonal shaped groove that is used like an oval groove (swedish oval).

Exactly two of ground_width, usable_width and flank_angle must be given.

Parameters

• r1 (float) – radius of the first edge

• r2 (float) – radius of the second edge

• depth (float) – depth of the groove

• ground_width (float) – width of the groove from intersection between two flanks and
ground width

• usable_width (float) – ground width excluding influence of radii

• flank_angle (float) – angle of the flanks

Raises
ValueError – if not exactly two of ground_width, usable_width and flank_angle are given

property types: 'oval', 'swedish_oval'

A tuple of keywords to specify the types of this groove.

22 Chapter 5. The concept of grooves in PyRolL

CHAPTER

SIX

THE CONCEPT OF PROFILES

Think of a Profile object as of a state of the workpiece anywhere in the pass sequence. Every sequence unit has
an incoming and an outgoing profile. Also, you must provide a profile as definition for the initial workpiece being
processed in the pass sequence.

Profiles Each profile has a certain shape, defined by the upper_contour_line and lower_contour_line and its
main dimensions height and width.

For creating an initial profile, several class methods exist in the Profile class. One can either derive the profile shape
from an existing groove object by use of the Profile.from_groove() method, or created some standard shapes use
of the other class methods of Profile, like Profile.round(). More values can be given as keyword arguments and
are saved automatically as attributes in the instance. Which you may or must provide depends on the loaded plugins.

class Profile(**kwargs)

Parameters
hook_args – keyword arguments to pass to hook calls

classmethod box(height: float, width: float, corner_radius: float = 0, **kwargs)→ Profile
Creates a box shaped profile (a real rectangular shape with rounded corners, without imperfections of box
grooves). A box is oriented to stand on its side, use square() to create a corner standing square.

Parameters

• height – the height of the box profile, must be > 0

• width – the width of the box profile, must be > 0

• corner_radius – the radius of the square’s corners, must be >= 0, <= height / 2 and <=
width / 2

• kwargs – additional keyword arguments to be passed to the Profile constructor

Raises
ValueError – if arguments are out of range

classmethod diamond(height: float, width: float, corner_radius: float = 0, **kwargs)→ Profile
Creates a diamond shaped profile (a real diamond shape with rounded corners, without imperfections of
diamond grooves). A diamond is oriented to stand on its corner.

Parameters

• height – the height of the diamond profile, must be > 0

• width – the width of the diamond profile, must be > 0

• corner_radius – the radius of the diamonds’s corners, must be >= 0, <= height / 2 and
<= width / 2

• kwargs – additional keyword arguments to be passed to the Profile constructor

23

PyRolL, Release 1.0.0

Raises
ValueError – if arguments are out of range

classmethod from_groove(groove: GrooveBase, width: Optional[float] = None, filling: Optional[float] =
None, height: Optional[float] = None, gap: Optional[float] = None, **kwargs)
→ Profile

Create a profile instance based on a given groove. The dimensioning of the profile is determined by the
parameters width, filling, height and gap. Give exactly one of width and filling. Give exactly one
of height and gap.

Parameters

• groove – the groove the profile should be created from

• width – the width of the resulting profile, must be > 0

• filling – the filling ratio of the groove, must be > 0

• height – the height of the profile, must be > 0

• gap – the gap between the groove contours (roll gap), must be >= 0

• kwargs – additional keyword arguments to be passed to the Profile constructor

Raises

• TypeError – on invalid argument combinations

• ValueError – if arguments are out of range

hook_result_attributes: Set[str]

Set remembering all hooks that were called on this class, used by delete_hook_result_attributes().

classmethod round(radius: Optional[float] = None, diameter: Optional[float] = None, **kwargs)→
Profile

Creates a round shaped profile (a real circle round, without imperfections of round grooves). Give exactly
one of radius and diameter.

Parameters

• radius – the radius of the round profile, must be > 0

• diameter – the diameter of the round profile, must be > 0

• kwargs – additional keyword arguments to be passed to the Profile constructor

Raises

• TypeError – on invalid argument combinations

• ValueError – if arguments are out of range

classmethod square(side: Optional[float] = None, diagonal: Optional[float] = None, corner_radius: float
= 0, **kwargs)→ Profile

Creates a square shaped profile (a real square with rounded corners, without imperfections of square
grooves). A square is oriented to stand on its corner, use box() to create a side standing one. Give exactly
one of side and diagonal.

Parameters

• side – the side length of the square profile, must be > 0

• diagonal – the diagonal’s length of the square profile, must be > 0. Note, that the diagonal
is measured at the tips, as if the corner radii were not present for consistency with box().

24 Chapter 6. The Concept of Profiles

PyRolL, Release 1.0.0

• corner_radius – the radius of the square’s corners, must be >= 0 and <= side / 2

• kwargs – additional keyword arguments to be passed to the Profile constructor

Raises

• TypeError – on invalid argument combinations

• ValueError – if arguments are out of range

6.1 Hooks

To read about the basics of hooks and plugins, see here.

The following hooks are defined on plain profiles per default:

cross_section(profile: Profile)→ Polygon
Cross-section polygon of the profile.

equivalent_rectangle(profile: Profile)→ Polygon
Get the dimensions of the equivalent rectangle of the profile.

flow_stress(profile: Profile)→ str
Flow stress of workpiece material.

height(profile: Profile)→ float
Height of the profile.

lower_contour_line(profile: Profile)→ LineString
Lower bounding contour line of the profile.

material(profile: Profile)→ Union[str, Iterable[str]]
Material identifier string for use in several other hooks to get material properties.

strain(profile: Profile)→ float
Equivalent strain of the profile.

temperature(profile: Profile)→ float
Temperature of the profile.

types(profile: Profile)→ float
A tuple of keywords to specify the shape types of the profile.

upper_contour_line(profile: Profile)→ LineString
Upper bounding contour line of the profile.

width(profile: Profile)→ float
Width of the profile.

6.1. Hooks 25

PyRolL, Release 1.0.0

6.2 Derived classes

For the units types RollPass and Transport, specialized versions of the Profile class are defined as nested classes
within the respective unit class. They all maintain their own hooks, so it is possible to specify hooks on profiles only
for those places, were they are applicable.

All hooks on those classes receive additionally to the profile instance also the instance of the roll pass or transport they
are belonging to.

26 Chapter 6. The Concept of Profiles

CHAPTER

SEVEN

PASS SEQUENCE UNITS IN PYROLL

This part of the documentation is currently work in progress.

Think of a rolling process as of a sequence of roll passes and intermediate times, called transports. Both are subsumed
under the term unit. The Unit class is the base class representing this concept. A unit can most abstractly be considered
as a black box transforming the state of a profile, thus taking an incoming profile instance, simulation its evolution within
the unit and yielding an outgoing profile instance.

It defines three attributes:

Attribute Description
label A label string for human identification, used in log messages and output.
in_profile The profile that represents the incoming workpiece state of the unit.
out_profile The profile that represents the outgoing workpiece state of the unit.

Currently, two derived classes exist in the core library: RollPass and Transport.

The unit class defines an abstract method solve(in_profile: Profile), which triggers the solution procedure
and accepts a profile object that has to be treated as the incoming profile. This object is copied and modified and made
available in the in_profile attribute by the implementations of this method.

Also, the Unit class maintains hooks that should be applicable to all types of units.

To read about the basics of hooks and plugins, see here.

7.1 Roll Passes

The roll pass is the most important unit, since forming of the workpiece is happening here. It is represented by the
RollPass class. The RollPass constructor takes a Roll object, which is defining the properties of the working rolls
including the groove.

7.1.1 Rolls

Roll objects represent a working roll implemented in a rolling stand. The main properties are about the geometry
and rotational movement of the roll. Rolls define the basic hooks specified below. With appropriate plugins, elastic
deformation of the rolls during the process can be modelled.

27

PyRolL, Release 1.0.0

7.1.2 Hooks

To read about the basics of hooks and plugins, see here.

On roll passes, several basic hooks are specified and implemented. You can provide your own implementations of them
and also specify new ones.

The figure below shows an overview over the respective classes and their hook function signature.

The following are defined by default.

RollPass

gap(roll_pass: RollPass)→ float
Gap between the rolls.

height(roll_pass: RollPass)→ float
Maximum height of the pass contour.

in_profile_rotation(roll_pass: RollPass)→ float
Rotation of the in profile for the specified roll pass.

mean_flow_stress(roll_pass: RollPass)→ float
Mean flow stress of the material for the respected roll pass.

roll(roll_pass: RollPass)→ float
Object representing the working rolls of the roll pass.

roll_force(roll_pass: RollPass)→ float
Roll force of the pass.

spread(roll_pass: RollPass)→ float
Spread in the pass as ratio b1/b0.

strain_change(roll_pass: RollPass)→ float
Applied strain in the pass.

strain_rate(roll_pass: RollPass)→ float
Mean strain rate in the pass.

tip_width(roll_pass: RollPass)→ float
Tip width of the pass contour.

velocity(roll_pass: RollPass)→ float
Mean rolling velocity.

volume(roll_pass: RollPass)→ float
Volume of the workpiece within the roll gap.

28 Chapter 7. Pass Sequence Units in PyRolL

PyRolL, Release 1.0.0

Roll

contour_line(roll: Roll)→ LineString
Contour line of the roll’s surface.

groove(roll: Roll)→ GrooveBase
Object representing the groove shape carved into the roll.

max_radius(roll: Roll)→ float
Maximal (outer) radius of the roll.

min_radius(roll: Roll)→ float
Minimal (inner) radius of the roll.

nominal_radius(roll: Roll)→ float
Nominal radius of the roll (equal to the grooves y=0 axis).

rotational_frequency(roll: Roll)→ float
The rotational frequency of the roll.

working_radius(roll: Roll)→ float
Working radius of the roll (some kind of equivalent radius to flat rolling).

RollPass.Roll

contact_area(roll_pass: RollPass, roll: Roll)→ float
Area of contact between workpiece and one roll.

contact_length(roll_pass: RollPass, roll: Roll)→ float
Contact length in rolling direction between rolls and workpiece.

roll_torque(roll_pass: RollPass, roll: Roll)→ float
Roll torque of the pass.

RollPass.Profile

flow_stress(roll_pass: RollPass, profile: Profile)→ float
Flow stress of workpiece material.

RollPass.OutProfile

filling_ratio(roll_pass: RollPass, profile: OutProfile)→ float
Filling ratio of profile width to usable groove width.

strain(roll_pass: RollPass, profile: OutProfile)→ float
Strain of the out profile.

width(roll_pass: RollPass, profile: OutProfile)→ float
Width of the out profile.

Below you will find detailed descriptions of selected hooks as example of using them.

7.1. Roll Passes 29

PyRolL, Release 1.0.0

in_profile_rotation

The angle in degree by which the incoming profile is rotated at feeding into the roll pass. Currently only integers
are valid values. Per default common rotations are implemented for the available groove types. Typically you will
use the applies_to_in_grooves and applies_to_in_grooves decorators from pyroll.utils to provide new
implementations. The code block below shows an example implementation of this hook, the explicit specname is used
to avoid naming conflicts when providing more than one implementation in one file.

@RollPass.hookimpl(specname="in_profile_rotation")
@applies_to_in_grooves("diamond")
@applies_to_out_grooves("diamond")
def diamonds(roll_pass):

return 90

7.2 Transports

7.2.1 Hooks

To read about the basics of hooks and plugins, see here.

On transports, several basic hooks are specified and implemented. You can provide your own implementations of them
and also specify new ones.

The figure below shows an overview over the respective classes and their hook function signature.

The following hooks are defined by default.

Transport

duration(transport: Transport)→ float
Duration of the transport.

Transport.OutProfile

strain(transport: Transport, profile: OutProfile)→ float
The equivalent strain of the outgoing profile of the transport unit.

30 Chapter 7. Pass Sequence Units in PyRolL

CHAPTER

EIGHT

HTML REPORT GENERATION

PyRolL includes a class capable of generating an HTML page presenting the simulation results, which can be archived
and printed. The report can be generated by use of the CLI through the report command.

The report includes per default key properties of all units, plots of incoming and outgoing profiles in each roll pass, as
well as some plots of key values along the whole sequence. The contents of the report can be modified using hooks.

The report includes tables listing properties of units or the whole sequence. One can customize the properties shown
there by providing hook implementations. For the table listing unit properties use the unit_properties() hook. For
the table listing properties of the whole sequence, use the sequence_properties() hook. The hook implementations
must return in both cases a mapping from string keys to values. The keys are printed in the first column of the table.
The values may be of any type, but they should have meaningful __str__ methods to lead to feasible results.

The report includes several plots. Plots visualizing the whole sequence of units or parts of it can be added by providing
an implementation of the sequence_plot() hook. Plots visualizing a single unit can be added by providing an imple-
mentation of the unit_plot() hook. The hook implementations must return in both cases an instance of matplotlib’s
Figure class.

8.1 Class Documentation

class Reporter

Class able to generate an HTML report sheet out of simulation results.

render(units: List[Unit])→ str
Render an HTML report from the specified units list.

Parameters
units – list of units to take the data from

Returns
generated HTML code as string

8.2 Hooks

sequence_plot(units: List[Unit])→ Figure
Generate a matplotlib figure visualizing the whole pass sequence, f.e. plot the distribution of roll forces. All
loaded hook implementations are listed in the report.

sequence_properties(units: List[Unit])→ Mapping[str, Any]
Extract some data from the unit sequence to be listed in the report. Return a mapping of label names to values.
All hookimpls will be joined in order of definition.

31

PyRolL, Release 1.0.0

unit_plot(unit: Unit)→ Figure
Generate a matplotlib figure visualizing a unit. All loaded hook implementations are listed in the report.

unit_properties(unit: Unit)→ Mapping[str, Any]
Extract some data from a unit to be listed in the report. Return a mapping of label names to values. All hookimpls
will be joined in order of definition.

32 Chapter 8. HTML Report Generation

CHAPTER

NINE

DATA EXPORT

PyRolL includes a class capable of converting the simulation results to a pandas DataFrame and save this to different
file formats. The feature can be accessed by use of the CLI through the export command.

The data included in the frame can be modified by hooks. The available file formats can be extended by the use of
hooks.

To read about the basics of hooks and plugins, see here.

9.1 Specifying data to include

There is a hook columns(unit : Unit) that can be used to specify the columns included in the data frame. One
can use the pyroll.utils.hookutils.applies_to_unit_types(types) decorator to specify the unit types the
hook implementation should apply to (currently only Unit, RollPass, Transport).

Each implementation must return a mapping of column names (string) to values (any type that can be data in a
DataFrame). The list of hook results will be combined to the final set of columns. Later registered implementations
will override earlier ones.

Define new implementations of this hook to include more data in the export. Commonly you would return a dict
mapping from str to a numeric type or string.

9.2 Adding new file formats

For exporting to a file a hook is defined to handle the formatting:

export(data: pandas.DataFrame, export_format: str)

It takes the generated DataFrame and a string specifying the format as arguments. Depending on the value of
export_format an implementation can decide whether it is able to handle the format or not. If it can, it should
return the binary data that will be saved to file. If it can not, it should return None. The first implementation not
returning None will be used for the file content (firstresult).

Current basic implementations support CSV and XML formats by use of the methods provided by DataFrame.

33

https://pandas.pydata.org/
https://pluggy.readthedocs.io/en/stable/#first-result-only

PyRolL, Release 1.0.0

9.3 Class Documentation

class Exporter

Class able to export simulation results to several data formats.

export(units: List[Unit], export_format: str)→ bytes
Call get_dataframe and export its results to a specified format.

Parameters

• units – list of units to take the data from

• export_format – a string key identifying the export format, valid values depend on the
loaded implementations of the ‘export’ hook

Returns
the exported data as binary stream

get_dataframe(units: List[Unit])→ DataFrame
Generate a pandas DataFrame by use of the unit_columns, roll_pass_columns and transport_columns
hooks.

Parameters
units – list of units to take the data from

Returns
a pandas data frame filled with the exported data

9.4 Hooks

columns(unit)→ Mapping[str, Any]
Take a unit object and extract some data to be listed in the CSV output. Return a mapping of column names to
values. All hookimpls will be joined in order of definition.

export(data: DataFrame, export_format: str)→ bytes
Export the data to a specified format. Return binary data that can be saved to a file. First hookimpl that does not
return None is taken. Return None to signal, that the impl does not support the export_format

34 Chapter 9. Data Export

CHAPTER

TEN

THE PLUGIN SYSTEM

PyRolL is mainly built on the plugin system pluggy, which is also used in well known projects like pytest and pytask.
Many core functionalities are also implemented as plugins. The PyRolL Core project only implements a minimal set
of model approaches, look into the various official and unofficial plugins available for more.

Unlike the other mentioned projects, PyRolL has not only one plugin system, but several. Many main classes of PyRolL
hold class attributes used to maintain plugins on that class, these are in detail:

Attribute Description
plugin_managerA pluggy.PluginManager instance used to maintain the plugins on this class.
hookspec A wrapper around a pluggy.HookspecMarker instance for defining new hook specifications. Sup-

ports only a subset of the original arguments.
hookimpl A wrapper around a pluggy.HookimplMarker instance for defining new hook implementations.

This is implemented using the pyroll.plugin_host.PluginHost class and the pyroll.plugin_host.
PluginHostMeta metaclass.

class PluginHostMeta(name, bases, dct)
Metaclass that provides plugin functionality to a class.

Not for direct uses but through PluginHost base class.

hookimpl: HookimplMarker

A wrapper around a pluggy.HookimplMarker instance for defining new hook implementations.

hookspec: HookspecMarker

A wrapper around a pluggy.HookspecMarker instance for defining new hook specifications. Supports
only a subset of the original arguments.

plugin_manager: PluginManager

A pluggy.PluginManager instance used to maintain the plugins on this class.

root_hooks: Set[str]

Set of hooks to call in every solution iteration.

class PluginHost(hook_args: Dict[str, Any])
A base class providing plugin functionality using the PluginHostMeta metaclass.

The get_from_hook() method is also callable through the attribute syntax (. notation), where the key equals
the attributes name.

Parameters
hook_args – keyword arguments to pass to hook calls

35

https://pluggy.readthedocs.io
https://docs.pytest.org
https://pytask-dev.readthedocs.io
https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager
https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.HookspecMarker
https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.HookimplMarker
https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.HookimplMarker
https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.HookspecMarker
https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager

PyRolL, Release 1.0.0

__getattr__(key: str)
Call a hook through attribute syntax if there is no explicit attribute with that name by use of
get_from_hook().

delete_hook_result_attributes()

Deletes the attributes created by get_from_hook() calls, except those present in root_hooks.

get_from_hook(key: str)
Explicitly tries to get a value from a hook specified on this class. Returns and caches the result of the hook
call as attribute. Use clear_hook_results() to clear the cache. Hook calls done by this function are not
cleared, only those by attribute syntax.

If the plugin manager does not know a hook of name key, the function dispatches to eventual base classes.

Parameters
key (str) – the hook name to call

Raises

• AttributeError – if the hook call resulted in None

• AttributeError – if the hook name is not known to this class, nor to base classes

• ValueError – if the hook call resulted in an infinite value

get_root_hook_results()

Call necessary root hooks of this instance and return an array of their results.

hook_args

Keyword arguments to pass to hook calls.

hook_result_attributes: Set[str]

Set remembering all hooks that were called on this class, used by delete_hook_result_attributes().

The hookspec markers of all classes derived from Unit (RollPass and Transport) and Profile are preconfigured
as firstresult. That means, that the first hook implementation, that returns not None is used as only result of the
hook call. This offers the possibility of implementing many specialized versions of a hook and fall back to general ones
if no special one applies.

Almost every attribute on the mentioned classes can be represented by a hook. This is achieved by overriding
__getattr__, so that if no attribute with a desired name is present on an object, the framework searches for a hook
of equal name. If there is no such hook, or the hook call results in None, an error is raised. Therefore, it is easy
to specify new hooks, just use the hookspec marker on a dummy function and add it to the plugin_manager by
use of plugin_manager.add_hookspecs(). It is common in writing plugins for PyRolL to specify hooks for all
intermediate and result values on profiles and units you want to calculate, and then to provide at least one general
implementation of them. Afterwards you can proceed providing more specialized implementations in the same plugin
package, or maybe also in another one if you need more flexibility in loading different implementations.

The classes Reporter and Exporter are also maintaining a plugin system, to allow plugins to contribute their own
results to the output. But those hooks are not firstresult per default and specifying new hooks is not as easy as
with units and profiles.

Details affecting only the distinct classes are described in their documentation.

For examples on specifying and implementing hooks, please read the pluggy documentation and look into the source
code of PyRolL.

36 Chapter 10. The Plugin System

https://pluggy.readthedocs.io/en/stable/#first-result-only
https://pluggy.readthedocs.io/en/stable/#first-result-only
https://pluggy.readthedocs.io

CHAPTER

ELEVEN

INSTALLATION

The PyRolL Core package is installable via PyPI

pip install pyroll

A collection of plugin packages can be installed the same way, the packages names usually start with pyroll-. Use
the PyPI search or look at the projects GitHub page for discovering plugins.

37

https://pypi.org
https://pypi.org/search/?q=pyroll
https://github.com/pyroll-project

PyRolL, Release 1.0.0

38 Chapter 11. Installation

CHAPTER

TWELVE

BASIC USAGE

The package provides a simple CLI tool that can be used to load input data, run the solution procedure and export the
solution data. The CLI provides several commands that can and must be chained in one call. No state is preserved
between different program runs.

The simplest use case is to read from a python script, solve and render the results to an HTML report page. The default
input file is input.py, the default report file report.html.

pyroll input-py solve report

One may specify the files explicitly with the -f/--file option:

pyroll input-py -f other_input.py solve report -f other_report.html

A most basic input file may look like:

from pyroll.core import Profile, RollPass, Transport, Roll, DiamondGroove, SquareGroove

in_profile = Profile.square(
side=45e-3, corner_radius=3e-3,
temperature=1200 + 273.15, flow_stress=100e6, strain=0,

)

sequence = [
RollPass(

label="Diamond I", velocity=1, gap=3e-3,
roll=Roll(

groove=DiamondGroove(
usable_width=76.5e-3, tip_depth=22e-3, r1=12e-3, r2=8e-3

),
nominal_radius=160e-3

)
),
Transport(duration=2),
RollPass(

label="Square II", velocity=1, gap=3e-3,
roll=Roll(

groove=SquareGroove(
usable_width=52.7e-3, tip_depth=26e-3, r1=8e-3, r2=6e-3

),
nominal_radius=160e-3

)
(continues on next page)

39

PyRolL, Release 1.0.0

(continued from previous page)

),
]

The file must define the variables in_profile and sequence defining the state of the initial workpiece and the se-
quence of roll passes and transport ranges. For a more advanced example, representing a pass sequence at the 3-high
mill at the Institute of Metals Forming, run:

pyroll create-input-py -k trio -f input.py

The PyRolL command line interface resides additionally on a YAML configuration file config.yaml. The default file
can be created using the following command:

pyroll create-config

The core section of this file is the plugins section. Here one can specify a list of plugins that will be loaded in each
simulation run. Another way of loading plugins is to directly import them in the input Python script.

It is recommended to create a fresh directory for each simulation project to avoid the need to specify the filenames
explicitly. A basic input and config file can be created in the current directory using

pyroll new

40 Chapter 12. Basic Usage

PYTHON MODULE INDEX

p
pyroll.core.grooves, 17
pyroll.core.profile.hookspecs, 25
pyroll.core.roll.hookspecs, 29
pyroll.core.roll_pass.hookspecs.out_profile,

29
pyroll.core.roll_pass.hookspecs.profile, 29
pyroll.core.roll_pass.hookspecs.roll, 29
pyroll.core.roll_pass.hookspecs.roll_pass, 28
pyroll.core.transport.hookspecs.out_profile,

30
pyroll.core.transport.hookspecs.transport, 30
pyroll.ui.exporter.hookspecs, 34
pyroll.ui.reporter.hookspecs, 31

41

PyRolL, Release 1.0.0

42 Python Module Index

INDEX

Symbols
__getattr__() (PluginHost method), 35

B
box() (Profile class method), 23
BoxGroove (class in pyroll.core.grooves), 17

C
CircularOvalGroove (class in pyroll.core.grooves), 18
columns() (in module pyroll.ui.exporter.hookspecs), 34
ConstrictedBoxGroove (class in pyroll.core.grooves),

18
ConstrictedSwedishOvalGroove (class in py-

roll.core.grooves), 18
contact_area() (in module py-

roll.core.roll_pass.hookspecs.roll), 29
contact_length() (in module py-

roll.core.roll_pass.hookspecs.roll), 29
contour_line (GenericElongationGroove property), 20
contour_line (GrooveBase property), 20
contour_line (SplineGroove property), 21
contour_line() (in module pyroll.core.roll.hookspecs),

29
cross_section (GenericElongationGroove property),

20
cross_section (GrooveBase property), 20
cross_section (SplineGroove property), 21
cross_section() (in module py-

roll.core.profile.hookspecs), 25

D
delete_hook_result_attributes() (PluginHost

method), 36
depth (GenericElongationGroove property), 20
depth (GrooveBase property), 20
depth (SplineGroove property), 21
diamond() (Profile class method), 23
DiamondGroove (class in pyroll.core.grooves), 19
duration() (in module py-

roll.core.transport.hookspecs.transport),
30

E
equivalent_rectangle() (in module py-

roll.core.profile.hookspecs), 25
export() (Exporter method), 34
export() (in module pyroll.ui.exporter.hookspecs), 34
Exporter (class in pyroll.ui.exporter), 34

F
FalseRoundGroove (class in pyroll.core.grooves), 19
filling_ratio() (in module py-

roll.core.roll_pass.hookspecs.out_profile),
29

FlatGroove (class in pyroll.core.grooves), 19
FlatOvalGroove (class in pyroll.core.grooves), 19
flow_stress() (in module py-

roll.core.profile.hookspecs), 25
flow_stress() (in module py-

roll.core.roll_pass.hookspecs.profile), 29
from_groove() (Profile class method), 24

G
gap() (in module py-

roll.core.roll_pass.hookspecs.roll_pass),
28

GenericElongationGroove (class in py-
roll.core.grooves), 20

get_dataframe() (Exporter method), 34
get_from_hook() (PluginHost method), 36
get_root_hook_results() (PluginHost method), 36
groove() (in module pyroll.core.roll.hookspecs), 29
GrooveBase (class in pyroll.core.grooves), 20

H
height() (in module pyroll.core.profile.hookspecs), 25
height() (in module py-

roll.core.roll_pass.hookspecs.roll_pass),
28

hook_args (PluginHost attribute), 36
hook_result_attributes (PluginHost attribute), 36
hook_result_attributes (Profile attribute), 24
hookimpl (PluginHostMeta attribute), 35
hookspec (PluginHostMeta attribute), 35

43

PyRolL, Release 1.0.0

I
in_profile_rotation() (in module py-

roll.core.roll_pass.hookspecs.roll_pass),
28

L
local_depth() (GenericElongationGroove method), 20
local_depth() (GrooveBase method), 20
local_depth() (SplineGroove method), 22
lower_contour_line() (in module py-

roll.core.profile.hookspecs), 25

M
material() (in module pyroll.core.profile.hookspecs),

25
max_radius() (in module pyroll.core.roll.hookspecs),

29
mean_flow_stress() (in module py-

roll.core.roll_pass.hookspecs.roll_pass),
28

min_radius() (in module pyroll.core.roll.hookspecs),
29

module
pyroll.core.grooves, 17
pyroll.core.profile.hookspecs, 25
pyroll.core.roll.hookspecs, 29
pyroll.core.roll_pass.hookspecs.out_profile,

29
pyroll.core.roll_pass.hookspecs.profile,

29
pyroll.core.roll_pass.hookspecs.roll, 29
pyroll.core.roll_pass.hookspecs.roll_pass,

28
pyroll.core.transport.hookspecs.out_profile,

30
pyroll.core.transport.hookspecs.transport,

30
pyroll.ui.exporter.hookspecs, 34
pyroll.ui.reporter.hookspecs, 31

N
nominal_radius() (in module py-

roll.core.roll.hookspecs), 29

O
Oval3RadiiFlankedGroove (class in py-

roll.core.grooves), 20
Oval3RadiiGroove (class in pyroll.core.grooves), 21

P
plugin_manager (PluginHostMeta attribute), 35
PluginHost (class in pyroll.core.plugin_host), 35
PluginHostMeta (class in pyroll.core.plugin_host), 35

Profile (class in pyroll.core.profile), 23
pyroll.core.grooves

module, 17
pyroll.core.profile.hookspecs

module, 25
pyroll.core.roll.hookspecs

module, 29
pyroll.core.roll_pass.hookspecs.out_profile

module, 29
pyroll.core.roll_pass.hookspecs.profile

module, 29
pyroll.core.roll_pass.hookspecs.roll

module, 29
pyroll.core.roll_pass.hookspecs.roll_pass

module, 28
pyroll.core.transport.hookspecs.out_profile

module, 30
pyroll.core.transport.hookspecs.transport

module, 30
pyroll.ui.exporter.hookspecs

module, 34
pyroll.ui.reporter.hookspecs

module, 31

R
render() (Reporter method), 31
Reporter (class in pyroll.ui.reporter), 31
roll() (in module py-

roll.core.roll_pass.hookspecs.roll_pass),
28

roll_force() (in module py-
roll.core.roll_pass.hookspecs.roll_pass),
28

roll_torque() (in module py-
roll.core.roll_pass.hookspecs.roll), 29

root_hooks (PluginHostMeta attribute), 35
rotational_frequency() (in module py-

roll.core.roll.hookspecs), 29
round() (Profile class method), 24
RoundGroove (class in pyroll.core.grooves), 21

S
sequence_plot() (in module py-

roll.ui.reporter.hookspecs), 31
sequence_properties() (in module py-

roll.ui.reporter.hookspecs), 31
SplineGroove (class in pyroll.core.grooves), 21
spread() (in module py-

roll.core.roll_pass.hookspecs.roll_pass),
28

square() (Profile class method), 24
SquareGroove (class in pyroll.core.grooves), 22
strain() (in module pyroll.core.profile.hookspecs), 25

44 Index

PyRolL, Release 1.0.0

strain() (in module py-
roll.core.roll_pass.hookspecs.out_profile),
29

strain() (in module py-
roll.core.transport.hookspecs.out_profile),
30

strain_change() (in module py-
roll.core.roll_pass.hookspecs.roll_pass),
28

strain_rate() (in module py-
roll.core.roll_pass.hookspecs.roll_pass),
28

SwedishOvalGroove (class in pyroll.core.grooves), 22

T
temperature() (in module py-

roll.core.profile.hookspecs), 25
tip_width() (in module py-

roll.core.roll_pass.hookspecs.roll_pass),
28

types (BoxGroove property), 17
types (CircularOvalGroove property), 18
types (ConstrictedBoxGroove property), 18
types (ConstrictedSwedishOvalGroove property), 18
types (DiamondGroove property), 19
types (FalseRoundGroove property), 19
types (FlatGroove property), 19
types (FlatOvalGroove property), 19
types (GenericElongationGroove property), 20
types (GrooveBase property), 20
types (Oval3RadiiFlankedGroove property), 21
types (Oval3RadiiGroove property), 21
types (RoundGroove property), 21
types (SplineGroove property), 22
types (SquareGroove property), 22
types (SwedishOvalGroove property), 22
types() (in module pyroll.core.profile.hookspecs), 25

U
unit_plot() (in module pyroll.ui.reporter.hookspecs),

31
unit_properties() (in module py-

roll.ui.reporter.hookspecs), 32
upper_contour_line() (in module py-

roll.core.profile.hookspecs), 25
usable_width (GenericElongationGroove property), 20
usable_width (GrooveBase property), 20
usable_width (SplineGroove property), 22

V
velocity() (in module py-

roll.core.roll_pass.hookspecs.roll_pass),
28

volume() (in module py-
roll.core.roll_pass.hookspecs.roll_pass),
28

W
width() (in module pyroll.core.profile.hookspecs), 25
width() (in module py-

roll.core.roll_pass.hookspecs.out_profile),
29

working_radius() (in module py-
roll.core.roll.hookspecs), 29

Index 45

	Commands
	create-config
	create-input-py
	new
	input-py
	solve
	report

	Examples
	Config File Format
	Python Input Format
	The concept of grooves in PyRolL
	The Generalized Groove
	Box-like Grooves
	The BoxGroove class
	The ConstrictedBoxGroove class

	Diamond-like grooves
	The DiamondGroove class
	The SquareGroove class

	Round-like Grooves
	The RoundGroove class
	The FalseRoundGroove class

	Oval-like Grooves
	The CircularOvalGroove class
	The FlatOvalGroove class
	The SwedishOvalGroove class
	The ConstrictedSwedishOvalGroove class
	The Oval3RadiiGroove class
	The Oval3RadiiFlankedGroove class

	Reference of Groove Classes

	The Concept of Profiles
	Hooks
	Derived classes

	Pass Sequence Units in PyRolL
	Roll Passes
	Rolls
	Hooks
	RollPass
	Roll
	RollPass.Roll
	RollPass.Profile
	RollPass.OutProfile
	in_profile_rotation

	Transports
	Hooks
	Transport
	Transport.OutProfile

	HTML Report Generation
	Class Documentation
	Hooks

	Data Export
	Specifying data to include
	Adding new file formats
	Class Documentation
	Hooks

	The Plugin System
	Installation
	Basic Usage
	Python Module Index
	Index

